三个限制:
\(Ah-AminH+Bv-BminV\leq C\ \to\ Ah+Bv\leq C+AminH+BminV\)\(v\geq minV\)\(h\geq minH\)记\(s=Ah+Bv\)。将序列按\(s\)从小到大排序。
\(n^2\)枚举\(minV,minH\)。如果固定\(minV\),从小到大枚举\(minH\)时,满足\(s\leq C+AminH+BminV\)的位置是单增的。统计答案时可以判一下是否满足\(v_i\geq minV\)。
但还有\(h_i\geq minH\)的限制。因为\(minH\)是递增的,之前满足条件的后来可能不满足。用一个堆维护之前加入的最小的\(h_i\)即可,不满足条件就弹出。
但是\(O(n^2\log n)\)过不去。问题在于怎么处理\(h_i\geq minH\)。按\(h\)排序然后\(<minH\)的都减掉?显然会多减掉一些不满足另外两个条件而未被统计的。
再观察一下限制,把\(h,v\)分开:\(A(h-minH)\leq C+B(minV-v)\)。
显然左式满足\(\geq0\),那么也有\(0\leq C+B(minV-v)\to minV\leq v\leq \frac CB+minV\)。 好像就是\(v\)不能过大使得\(h\)过小?\(v\leq\frac CB+minV\)时,限制一就成了\(A(h-minH)+(\leq C的值)\leq C\)。若\(h\leq minH\),显然满足这个\(s\)的限制。
如果在\(s\)满足条件且\(minV\leq v\leq \frac CB+minV\)时\(ans\)++,限制一二仍旧满足。
如果\(h<minH\)且\(minV\leq v\leq \frac CB+minV\),如上所说此时也满足\(s\)的限制,所以此时\(ans\)--减掉的就一定是之前统计过的了。所以就可以做到不重不漏了orz。//976kb 2392ms#include#include #include #define gc() getchar()typedef long long LL;const int N=5005;struct Node{ int h,v; LL s;}a[N],b[N];inline int read(){ int now=0;register char c=gc(); for(;!isdigit(c);c=gc()); for(;isdigit(c);now=now*10+c-'0',c=gc()); return now;}inline bool cmps(const Node &a,const Node &b){ return a.s =mnv && a[r].v<=mxv), ++r; while(b[l].h =mnv && b[l].v<=mxv), ++l; ans=std::max(ans,cnt); } } printf("%d\n",ans); return 0;}